NavDataExplorer/browser/src/parser/utils/computeIntersection.ts
2025-07-17 03:31:46 +02:00

75 lines
2.5 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @param p1 Point 1
* @param brng1 Bearing from Point 1
* @param p2 Point 2
* @param brng2 bearing from Point 2
* @returns Intersection point
*/
export const computeIntersection = (
p1: NavFix,
brng1: number,
p2: NavFix,
brng2: number
): NavFix | undefined | null => {
if (isNaN(brng1)) throw new TypeError(`invalid brng1 ${brng1}`);
if (isNaN(brng2)) throw new TypeError(`invalid brng2 ${brng2}`);
const π = Math.PI;
// see www.edwilliams.org/avform.htm#Intersection
const φ1 = p1.latitude.toRadians(),
λ1 = p1.longitude.toRadians();
const φ2 = p2.latitude.toRadians(),
λ2 = p2.longitude.toRadians();
const θ13 = Number(brng1).toRadians(),
θ23 = Number(brng2).toRadians();
const Δφ = φ2 - φ1,
Δλ = λ2 - λ1;
// angular distance p1-p2
const δ12 =
2 *
Math.asin(
Math.sqrt(Math.sin(Δφ / 2) * Math.sin(Δφ / 2) + Math.cos(φ1) * Math.cos(φ2) * Math.sin(Δλ / 2) * Math.sin(Δλ / 2))
);
if (Math.abs(δ12) < Number.EPSILON) return p1; // coincident points
// initial/final bearings between points
const cosθa = (Math.sin(φ2) - Math.sin(φ1) * Math.cos(δ12)) / (Math.sin(δ12) * Math.cos(φ1));
const cosθb = (Math.sin(φ1) - Math.sin(φ2) * Math.cos(δ12)) / (Math.sin(δ12) * Math.cos(φ2));
const θa = Math.acos(Math.min(Math.max(cosθa, -1), 1)); // protect against rounding errors
const θb = Math.acos(Math.min(Math.max(cosθb, -1), 1)); // protect against rounding errors
const θ12 = Math.sin(λ2 - λ1) > 0 ? θa : 2 * π - θa;
const θ21 = Math.sin(λ2 - λ1) > 0 ? 2 * π - θb : θb;
const α1 = θ13 - θ12; // angle 2-1-3
const α2 = θ21 - θ23; // angle 1-2-3
if (Math.sin(α1) == 0 && Math.sin(α2) == 0) return undefined; // infinite intersections
if (Math.sin(α1) * Math.sin(α2) < 0) return p2; // ambiguous intersection (antipodal/360°)
const cosα3 = -Math.cos(α1) * Math.cos(α2) + Math.sin(α1) * Math.sin(α2) * Math.cos(δ12);
const δ13 = Math.atan2(Math.sin(δ12) * Math.sin(α1) * Math.sin(α2), Math.cos(α2) + Math.cos(α1) * cosα3);
const φ3 = Math.asin(
Math.min(Math.max(Math.sin(φ1) * Math.cos(δ13) + Math.cos(φ1) * Math.sin(δ13) * Math.cos(θ13), -1), 1)
);
const Δλ13 = Math.atan2(Math.sin(θ13) * Math.sin(δ13) * Math.cos(φ1), Math.cos(δ13) - Math.sin(φ1) * Math.sin(φ3));
const λ3 = λ1 + Δλ13;
const lat = φ3.toDegrees();
const lon = λ3.toDegrees();
return {
...p1,
latitude: lat,
longitude: lon,
name: 'INTC',
isIntersection: true,
};
};